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Unveiling the potentials of 
biocompatible silver nanoparticles 
on human lung carcinoma A549 
cells and Helicobacter pylori
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silver nanoparticles (AgNps) are gaining importance in health and environment. this study synthesized 
AgNps using the bark extract of a plant, Toxicodendron vernicifluum (Tv) as confirmed by a absorption 
peak at 420 nm corresponding to the Plasmon resonance of AgNPs. The AgNPs were spherical, oval-
shaped with size range of 2–40 nm as evident by field emission transmission electron microscopy (FE-
TEM) and particle size analysis (PSA). The particles formed were crystalline by the presence of (111), 
(220) and (200) planes, as revealed by X ray diffraction (XRD) and energy dispersive spectroscopy (EDS). 
the presence of amine, amide, phenolic, and alcoholic aromatics derived from tv extract was found 
to be capping and or reducing agents as evident by Fourier-transform infrared spectroscopy (FTIR) 
spectra. The Tv-AgNPs were observed to be biocompatible to chick embryonic and NIH3T3 cells at 
various concentrations. Interestingly, Tv-AgNPs at the concentration of 320 µg. mL−1 induced 82.5% of 
cell death in human lung cancer, A549 cells and further 95% of cell death with annexin V FITC/PI based 
apoptosis. the tv-AgNps selectively targeted and damaged the cancer cells through Ros generation. 
The Tv-AgNPs displayed minimal inhibitory concentration (MIC) of 8.12 µg.mL−1 and 18.14 µg.mL−1 
against steC and H. pylori respectively. this multi-potent property of tv-AgNps was due to shape and 
size specific property that facilitated easy penetration into the bacterial and cancer cells for targeted 
therapy.

Phytochemicals-medicated synthesis of metal nanoparticles has received due attention because of their bioactiv-
ities such as antibiotic, cytotoxic, drug cargo and photocatalytic potentials1,2. Among the metallic nanomaterials, 
silver nanoparticles (AgNPs) are of significance for their antibacterial effect on human pathogens3–5, wound heal-
ing6, antioxidant7, anticancer activities, and dental applications as acrylic resins, composite resins and adhesives, 
endodontics, periodontal materials, porcelain restoration, titanium implants, and orthodontics8. The surgical 
sutures, when coated with AgNPs are shown to prevent the post wound healing infections9. The potent antimi-
crobial properties of AgNPs has increased the demand in medical applications. AgNPs-based medical products 
are also available in market such as contraceptive devices, bone prostheses, biomedical devices, wound dressing, 
and surgical instruments10–13.

The multi-drug resistant pathogens are causing the life-threatening human diseases. In this regard, the 
Gram-negative Helicobacter pylori colonizes the gastric epithelium, and it causes several illnesses and chronic 
diseases in human14. This pathogen is known to produce urease enzyme, which converts the urea to ammonia and 
bicarbonate resulting in neutralization of acidic pH in stomach to create appropriate pH (4.5–7.0) for pathogenic 
colonization15. The eradication of H. pylori can prevent various gastrointestinal diseases including peptic ulcer, 
gastritis, mucosa-associated lymphoid lymphoma, and adenocarcinoma16. Recent advancement in the nanotech-
nology has developed several drug delivery systems to target H. pylori17–21. For the instance, the amoxillin loaded 
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in the PLGA (poly(lactic-co-glycolic acid) functionalized with receptor UreI has enhanced targeted drug delivery 
towards eradication of H. pylori22. Another Gram-negative bacterium is Shiga toxin (Stx1 and Stx2) producing 
Escherichia coli (STEC), colonising in the human gut and causing Hemolytic uremic syndrome (HUS), hemor-
rhagic colitis, pneumonia, urinary infections, meningitis, and bacteremia, diarrhea23.

Environmental pollution and cigarette smoking habits have significantly increased the incidence of lung and 
cardiovascular diseases24,25. Chemotherapeutics, radiation, and surgical approaches for curing the diseases are 
expensive, often toxic to normal cells and also causing side effects1,26. In this context, AgNPs are advantageous in 
eliciting cancer cell death through the cell cycle arrest, mitochondrial pathways (Reactive oxygen species (ROS) 
generation), nucleus damage, apoptosis through up-regulation or down-regulation of apoptosis pathways related 
proteins and genes, necrosis, DNA damage, autophagy and oxidative stress27,28, Therefore, fabrication of biocom-
patible nanoparticles with no side effects can be helpful in successful treatment of the cancer cells.

Green synthesize of AgNPs using the plant extracts are potentially less in toxicity to normal cells, ecologically 
sustainable, economically viable and less time consuming approach29. Several reports are available on the syn-
thesis of AgNPs from plants such as Trapa natans27, Phoenix dactylifera30, Cleome viscosa L.31, Lycium chinense32, 
Taxus baccata33, Clerodendrum phlomidis34 and their cytotoxicity on cancer cells. The AgNPs synthesized from 
Rhus coriaria under the genus Rhus (Toxicodendron) and the family Anacardiaceae are reported for cytotoxicity 
on human breast cancer cell line (MCF-7). Another species of the same genus and family is T. vernicifluum, 
reported to have antitumorigenic, antioxidant, neuroprotective, and cytotoxicity effects35–37 but not used for the 
synthesis of AgNPs. Hence, the present work synthesised the silver nanoparticles (Tv-AgNPs) using the aqueous 
extract of bark derived from T. vernicifluum and characterized using the FE-TEM-EDS, PSA, FTIR, and XRD. 
Antibacterial, cytotoxic and anti-proliferation activities of Tv-AgNPs were also investigated.

Results and Discussion
phytogenic silver nanoparticles. Biochemical substances including phenolics, and flavonoids from the 
plants act as reducing or capping agent for reduction of the silver ions, facilitating the phytogenic synthesis of 
AgNPs. This was confirmed through absorption plasmon resonance ranged from 400–450 nm by UV-vis spectro-
photometer38, as well as through observation of color changes from pale yellow to brown colour in the reaction 
mixture after 12 hours of incubation as also indicated by UV-vis absorption peak at 420 nm corresponding to the 
AgNPs plasmon resonance (Fig. 1). Further, the FETEM analysis was made to study the morphology, size, and 
shape of Tv-AgNPs and the results revealed the Tv-AgNPs as anisotropic in structure, spherical and oval-shaped 
with size range of 2–40 nm (Fig. 2a). In addition, the FETEM-EDS based mapping and chromatographs indicated 
the presence of Ag in micrographs (Fig. 2b–d), in accordance with the previous reports39–41.

The XRD pattern as indicated in Fig. 2e confirmed the natural formation, crystallinity, and purity of Tv-AgNPs 
in accordance with Bragg reflection of (111), (220), (200), (311). Compared to Joint committee on powder diffrac-
tion standards (JCPDS-89–3722), the results are similar to the earlier reports of XRD patterns of silver nanopar-
ticles42,43. The EDS and XRD results confirmed the successful synthesis of the silver nanoparticles using the bark 
extract of T. vernicifluum. Furthermore, the PSA analysis revealed the size range of Tv-AgNPs size from 2–40 nm 
with an average of 12.01 nm (Fig. 3a), which is in agreement with the FETEM results. As indicated by FETEM 
and PSA, different morphological structures of Tv-AgNPs generated were due to excessive capping or binding of 
the bark extract of T. vernicifluum. Similarly, several earlier works have reported the significant involvement of 
phytochemicals in the generation and properties of the AgNPs39,40,44,45.

The FTIR analysis was performed to determine the capping of functional biomolecules in Tv-AgNPs and the 
results are depicted in Fig. 3b. There are several stretching vibrations as 3253 (weak O-H stretching, alcohol), 2927 
(strong N-H stretching, amine), 1594 (strong C=O stretching, amide), 1402 (week C=C stretching, aromatic), 
1146 (medium C-N stretching, amine), 1074 (strong C-O stretching, aromatic ester), 1018 (Strong C-F, fluoro 
compound), 923 (strong C=C, alkaline), 843 (C-Cl, halo compounds), and 767 (Strong C-H), 519 (C-l). This 

Figure 1. Ultraviolet-vis spectrum of Tv –AgNPs synthesized by the reaction of 3 mM AgNO3 and 5 ml of 
aqueous bark extract from T. vernicifluum.
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indicated that the presence of amine, amide, phenolic, alcoholic aromatics from the bark extract of T. vernici-
fluum involved as reducing or capping agent in the synthesis of the Tv-AgNPs and this finds support of earlier 
reports32,38,46–48.

Cytotoxicity and anti-proliferation assay. Analysis of cytotoxicity of biological materials is essential for 
the pharmacological trails. Hence, the present study determined the cytotoxicity of Tv-AgNPs by CAM and WST 
assays. CAM assay revealed that that exposure of negative control with 0.1 M NaOH induced the blood hemor-
rhage and coagulation, while the distilled water did not cause any irritant reaction. The Tv-AgNPs exposure did 
not cause any irritant reaction at 50 µg.mL−1, but slightly irritant only at 100 µg.mL−1 (S.Fig. 1). Further, in vitro 
cytotoxicity assay was performed on mouse embryo NIH3T3 cells and the results indicated that the NIH3T3 cells 
growth was not significantly reduced with the treatment of Tv-AgNPs at different concentrations (Fig. 4), In addi-
tion, AO/EB and DCFH-DA staining showed no cell death and ROS generation respectively with the treatment of 
Tv-AgNPs (S.Fig. 2). Further, the apoptosis analysis by flow cytometer assay indicated only negligible apoptosis 

Figure 2. Field-Emission Transmission Electron Microscope (FE-TEM) observation of Tv –AgNPs synthesized 
by aqueous bark extract from T. vernicifluum. Anisotropic structured of Tv-AgNPs visualized by FE-TEM 
(a), scanning of the Ag+ in FETEM micrographs by Energy dispersive X-ray spectroscopic (EDS) (b,c) 
Determination of the Ag+ by FETEM-EDS spectra (d) XRD pattern of Tv-AgNPs (e).

Figure 3. Particle size (a) and Fourier-transform infrared spectroscopy (b) analysis of the Tv-AgNPs.
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(0.50%) with the treatment of Tv-AgNPs (S.Fig. 3a,b). These results of CAM assay, cell toxicity (WST assay), 
AO/EB, DCFH-DA staining and flow cytometric (Annexin V FITC/PI) analyses confirmed the non-toxicity of 
Tv-AgNPs. Similarly, the non-toxicity of phytogenic AgNPs is reported on normal cell lines of renal (MDCK)49, 
epithelial HBL-10043, and Human embryonic kidney HEK 29350.

On the other hand, the treatment of Tv-AgNPs induced the death of human lung cancer cells in A549 cell 
line at concentration-dependent manner (Fig. 4). About 82.5% of cells were dead in the treatment of Tv-AgNPs. 
Similarly, Annexin V FITC/PI based apoptosis assay also showed about 95% cell death with treatment of 
Tv-AgNPs at 320 µg.mL−1 (S.Fig. 3c,d). Further, AO/EB, DCFH-DA staining results showed the cell damage 
and ROS generation at the exposure to 320 µg.mL−1 of Tv-AgNPs (Fig. 5). This indicated the smart cancer cells 
sensing efficiency of Tv-AgNPs in causing cancer cell death through ROS mediated apoptosis in human lung 
cancer cells, induction of the oxidative stress and reduction of ATP generation required for the cellular energy51. 
Moreover, it is reported that AgNPs trigger the cell apoptosis in human breast cancer cell MCF-7, human lung 
carcinoma A549, HCT116, HepG252, colon cancer cell line HT-29, SW620 through the interactions with cell 
organelles including mitochondria, nucleus, proteins, and DNA53.

Antibacterial activity. Silver nanoparticles inhibit the bacterial pathogens by penetrating through the 
bacterial cell wall and binding with peptidoglycan or lipopolysaccharide, subsequently damaging the bacterial 
membrane, forming the membrane pits, and inducing the leakage of cellular materials54–57. Similarly, the sil-
ver nanoparticles synthesized in the present study displayed potent antibacterial activity at the minimal inhib-
itory concentration of 8.12 µg.mL−1 for STEC and 18.14 µg.mL−1 for H. pylori. Further, the disc diffusion assay 

Figure 4. Cytotoxicity and antiproliferative effect of Tv-AgNPs on mouse embryo fibroblast cell line NIH3T3 
and human lung carcinoma A549. NS- Not significant with NIH3T3 and A549. *p significantly differs.

Figure 5. Effect of Tv AgNPs treatments and untreated on cellular morphology changes and reactive oxygen 
species generation in human lung carcinoma A549.
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revealed that Tv-AgNPs at 100 µg.mL−1 displayed the higher zone of inhibition against H. pylori (17 mm) and 
STEC (22 mm) than the standard kanamycin (S.Fig. 4). The bacterial cellular damage and cell disruption due to 
the treatment of the Tv-AgNPs were observed under TEM, and the images clearly indicated the cell wall damage 
with elution of cellular inclusions by the treatment of Tv-AgNPs in comparison to untreated cells of H. pylori and 
STEC (Fig. 6). This potential activity is likely due to unique shape and size of Tv-AgNPs for easy penetration into 
the bacterial cells followed by ROS formation, DNA damage, and cellular membrane damage, growth signalling 
pathway and tyrosine phosphorylation42,58–60. Similarly, silver nanoparticles, synthesised from the Solanum xan-
thocarpum L. and Peganum harmala L are reported to significantly inhibit the growth of the H. pylori61,62.

Conclusion
The prevention of the microbial infections and biofilm formation by dangerous microbes such as H. pylori and 
STEC is essential for human health. Eco-friendly, cost-effective and green method was attempted to synthesise 
the Tv-AgNPs using aqueous bark extract of T. vernicifluum as reducing or capping agent. The size of Tv-AgNPs 
ranged from 2–40 nm with anisotropic structure, spherical and oval shape, as revealed by TEM and PSA. The 
Tv-AgNPs were nontoxicity as confirmed through CAM assay on Egg and cytotoxicity assay in NIH3T3. The 
small-sized (<40 nm) Tv-AgNPs displayed potential antibacterial, and anti-proliferative activities by inducing the 
ROS, oxidative stress, DNA division, nucleus damage, and apoptosis in both cancer and bacterial cells. Hence, the 
Tv-AgNPs deserve for the preparation of biomedical products such as would dressing cloth, and surgical devices.

Materials and Methods
Chemicals, bacterial strains, and cell culture. Gram-negative bacterial human pathogens such as 
Helicobacter pylori (MH179988) and Shigella toxin producing Escherichia coli (MH180008) were received from 
the laboratory of Professor Deog-Hwan Oh, College of Biotechnology and Bioscience, Kangwon National 
University, Chuncheon, Republic of Korea. The bacterial strains were preserved in 20% glycerol at −80 °C. The 
chemicals such as dichlorofluorescein diacetate (DCFH-DA), trypsin, acridine orange Hemi salt (AO), ethidium 
bromide (EB) were obtained from Sigma Aldrich, Republic of Korea. The cell viability proliferation and cytotox-
icity assay kit (EZ-CYTOX water-soluble tetrazolium (WST) (EZ-CyTox)) was purchased from Daeil Lab Service, 
Republic of Korea. Dulbecco’s modified eagle medium (DMEM), penicillin, streptomycin, and fetal bovine serum 
(FBS) were procured from Thermo Fishers Scientific Seoul, the Republic of Korea. Dead Cell Apoptosis Kit with 
Annexin V FITC/PI - for Flow Cytometry was purchased from Invitrogen, Thermo fishers scientific, Republic of 
Korea. Mueller Hinton Broth was obtained from MB cell, Seoul, Republic of Korea. The cell lines such as mouse 
embryo fibroblast cell line NIH3T3 and human lung carcinoma A549 were received from the Korean cell line 
bank (Seoul, Republic of Korea). The bark sample of Toxicodendron vernicifluum was collected from Wonju-
malgeun-chamott, Wonju city, Republic of Korea.

synthesis and characterization of tv-AgNps. The bark samples were subjected to the water extraction 
according to the methods reported earlier with minor modifications63,64. The bark extract was prepared by boiling 
the 5 g of bark samples in 100 ml of distilled H2O at 90 °C for 10 min, followed by that the extracts were cooled 
in room temperature then collected by the centrifugation at 10000 rpm for 20 min. Finally, the extracts were fil-
tered through the Whatman No.1 filter paper and stored in room temperature for further use. For the synthesis 
of the Tv-AgNPs, 3 mM of AgNO3 was dissolved in 10 ml of bark extract at room temperature. The synthesis of 
Tv-AgNPs was observed by scanning the reaction mixture in a range from 200 to 700 nm using the UV spectro-
photometer (Optizen 2120UV, Korea). To analysis the morphology, shape and dispersion characteristics, the 
Tv-AgNPs were carbon coated in copper grid and then observed under Transmission electron microscopic (TEM, 

Figure 6. Antibacterial activity; transmission electron microscopic observation of cellular morphology changes 
in bacterial cells treated or untreated with Tv AgNPs, the red arrow indicates the cell damage.
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JEOL-JSM 1200EX, Japan) with Energy dispersive X-ray spectroscopy (EDS), X-ray diffractometer (X’pert-pro 
MPD- PANalytical, Netherland) operated at 40 keV, 40 mA with Cu κα radiation in θ−2θ. The size of Tv-AgNPs 
was measured using particle size analyzer (PSA, Malvern Mastersizer 2000, Britain). The chemical nature and 
functional groups present in Tv-AgNPs were analysed by using Fourier-transform infrared spectroscopy (FTIR 
PerkinElmer Paragon 500, USA).

Cytotoxicity. Allergic and toxic effect of Tv-AgNPs was tested by using chick embryo chorioallantoic mem-
brane (CAM) assay65,66. Cytotoxicity and anti-proliferation effects of Tv-AgNPs were investigated on NIH3T3 and 
A549 cells respectively using WST assay67. Briefly, NIH3T3 or A549 (1 × 104) cells were seeded in 96-well plates 
containing DMEM or RPMI 1640 medium and allowed in 5% CO2 incubator at the humidified environment for 
overnight to get 80–90% confluence. Then 10 µl of Tv- AgNPs at the different concentrations (0–320 µg.ml−1)  
were added to Tv-AgNPs; after 12 h of exposure the WST1 reagent was added and incubated for 30 min to 4 hours; 
and then measured the absorbance at 450 nm as per manufacturer’s instructions of WST-1 method. The exper-
iments were conducted in three independent trials with three replicates for each trial and the cell viability was 
determined. Further, the effect of Tv-AgNPs treatment on NIH3T3 and A549 cells was analysed for morphological  
changes1,68. The DCFH-DA stain assay was used to measure the ROS generation at an excitation of 495 nm and 
emission of 529 nm. Apoptosis was observed by AO/EB staining assay69 and images were taken using the fluores-
cence microscope (Olympus, CKX53 culture microscope, Japan).

In vitro antibacterial assay. Effect of Tv-AgNPs on the eradication of H. pylori and Shigella toxin pro-
ducing Escherichia coli (STEC) was analyzed using the microdilution method (Clinical and laboratory standard 
institute, CLSI). For the elucidation of minimal inhibitory concentration (MIC), the STEC was grown in Mueller 
Hinton Broth (MHB) and H. pylori in brain heart infusion (BHI) broth in a rotary shaker at 180 rpm at 37 °C 
for 24 h. The bacterial suspension (109 CFU.ml−1) was dispensed in 96-well (Costar) plates containing different 
concentrations of Tv-AgNPs (0.1–12.5 µg.ml−1). The un-inoculated MHB and untreated bacterial cells were used 
as negative and positive controls respectively and optical density was measured at 600 nm70. Tv-AgNPs induced 
bacterial cell disruption was observed using high-resolution transmission electron microscopy (HRTEM)71. For 
HRTEM analysis, the MIC of PDK-CE was treated to H. pylori for 24 h at 37 °C. After the treatment period, the 
cells were collected by centrifugation, then fixed them with 4% glutaraldehyde (v/v) for 2 h and the cells were 
dehydrated by acetone (70%). Finally, the cellular changes were observed using the HRTEM (JEOL-2010, Japan).
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