Volume Fraction of Composites

Dr. Arockia Julias A

Department of Mechanical Engineering

Introduction

- Composites consist of Reinforcement and Matrix phase
- Mechanical properties of these composites depends on the volume fraction of reinforcement and matrix
- The reinforcement material can be either fiber, particle or whiskers
- Fiber weight fraction can be measured practically to compute the fiber volume fraction
- The other mechanical properties can be calculated from fiber volume fraction

Dr. Arockia Julias A

Weight Fraction

- Standard methods used for measuring weight fraction are

1. Ignition loss / Burn-off test - ASTM D2854
2. Matrix digestion - ASTM D 3171

Dr. Arockia Julias A

Weight Fraction cont....

Weight of composite,
Weight of matrix,
For unit weight of composite,

$$
\begin{aligned}
\mathrm{w}_{\mathrm{c}} & =\mathrm{w}_{\mathrm{f}}+\mathrm{w}_{\mathrm{m}} \\
\mathrm{w}_{\mathrm{m}} & =\mathrm{w}_{\mathrm{c}}-\mathrm{w}_{\mathrm{f}} \\
1 & =\mathrm{w}_{\mathrm{f}}+\mathrm{w}_{\mathrm{m}}
\end{aligned}
$$

Where,
w_{c} - Weight of Composite
w_{f} - Weight of Fiber / Reinforcement
w_{m} - Weight of Matrix
Void content is assumed to be negligible
Dr. Arockia Julias A

Fiber Volume Fraction

$$
\mathrm{v}_{\mathrm{f}}=\frac{w_{\mathrm{f}} / \rho_{\mathrm{f}}}{\left(w_{\mathrm{f}} / \rho_{\mathrm{f}}\right)+\left(w_{\mathrm{m}} / \rho_{\mathrm{m}}\right)},
$$

Where,
V_{f} - Volume fraction of Fiber / Reinforcement
V_{m} - Volume fraction of Matrix
ρ_{f} - Density of Fiber / Reinforcement
ρ_{m} - Density of matrix
V_{c} - Volume fraction of Composite
Dr. Arockia Julias A

Fiber Volume Fraction cont...

Volume of composite ,

$$
v_{c}=v_{f}+v_{m}
$$

For unit volume of composite,

$$
1=v_{f}+v_{m}
$$

Volume fraction of matrix,

$$
v_{m}=1-v_{f}
$$

Density of composite,

$$
\rho_{c}=\rho_{f} v_{f}+\rho_{m} v_{m}
$$

Dr. Arockia Julias A

Void Fraction

Void content in a composite can be estimated by comparing the theoretical density with actual density of the composites manufactured.

Void fraction of composite, $\quad \mathrm{VV}=\frac{\rho \mathrm{ct}-\rho \mathrm{ca}}{\rho \mathrm{ct}}$
Where,
v_{v} - Volume fraction of void
$\rho_{c t}$ - Theoretical density of composite
$\rho_{c a}$ - Actual density of composite
Dr. Arockia Julias A

Tutorial 1

The following data is obtained from the burn-out test conducted in a glass-epoxy composite. Weight of empty crucible is 46.5 g . Weight of crucible and composite is 66.3 g . Weight of crucible and glass fiber is 58.6 g . Find the volume fraction of fiber and actual density of composite. Take density of glass fiber as $2.49 \mathrm{~g} / \mathrm{cm}^{3}$ and that of matrix as $1.1 \mathrm{~g} / \mathrm{cm}^{3}$.

Solution:

Weight of composite,
Weight of fiber,
Weight of matrix,

Volume fraction of fiber,
Volume fraction of matrix,
Density of composite

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{c}}=66.3-46.5=19.8 \mathrm{~g} \\
& \mathrm{~W}_{\mathrm{f}}=58.6-46.5=12.1 \mathrm{~g} \\
& \mathrm{~W}_{\mathrm{m}}=19.8-12.1=07.1 \mathrm{~g} \\
& 12.1 / 2.49 \\
& \mathrm{~V}_{\mathrm{f}}=\frac{12.1 / 2.49+7.7 / 1.1}{12}=0.41 \\
& \mathrm{~V}_{\mathrm{m}}=1-0.41=0.59 \\
& \rho_{\mathrm{c}}=2.49 \times 0.41+1.1 \times 0.59=1.67 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

Dr. Arockia Julias A

Tutorial 2

Find the fiber volume fraction and density of a composite with 45 weight percentage of fiber. Assume density of fiber as $2.4 \mathrm{~g} / \mathrm{cm}^{3}$ and that of matrix as $1.1 \mathrm{~g} / \mathrm{cm}^{3}$.
Solution:
Assume a composite sample of unit mass (1g) and compute the volume,

Weight of fiber,
Weight of matrix,
Volume fraction of fiber,
Volume fraction of matrix,
Density of composite

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{f}}=0.45 \mathrm{~g} \\
& \mathrm{~W}_{\mathrm{m}}=1-0.45=0.55 \mathrm{~g} \\
& \mathrm{~V}_{\mathrm{f}}=\frac{0.45 / 2.4}{0.45 / 2.4+0.55 / 1.1}=0.27 \text { or } 27 \% \\
& \mathrm{~V}_{\mathrm{m}}=1-0.27=0.73 \text { or } 73 \% \\
& \rho_{\mathrm{c}}=2.4 \times 0.27+1.1 \times 0.73=1.45 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

Dr. Arockia Julias A

Thank you

Reference: Fiber Reinforced Composites by P K Mallick

