LESSON PLAN

1. Course Title : Aircraft Structural Mechanics

5. Semester

: IV

2. Course Code

: AEC2212

6. Academic Year: 2018-19

3. Course Faculty : S. V. Karthikeyan

7. Department: Aerospace Engg.,

4. Theory/Practical:

Theory

8. No. of Credits :4

9. Course Learning Objectives:

To understand the theoretical concepts of material behavior with particular emphasis on their elastic

10. Course pre-requisites:

Engineering Mechanics, Solid Mechanics

11. Schedule of teaching and learning

As per Annexure-I

- 12. Course material and References
- 1. James M Gere & Barry J. Goodno, "Mechanics of Materials, Cenage Learning",7th Edition, 2009.
- 2. THG Megson, "Aircraft Structures for Engineering Students", Elsevier (BH), 4th Edition, 2007.
- 3. C.T. Sun, "Mechanics of Aircraft Structures", 2nd Edition, John Wiley & Sons.2006.
- 4. R.C. Hibbeler, "Structural Analysis", 5th Edition, Prentice-Hall, 2002.
- 5. B.C.Punmia, Ashok Kumar Jain, Arun Kumar Jain, "Mechanics of Materials", Firewall media, 2002.
- 6. Craig, R.R., "Mechanics of Materials", John Wiley & Sons, New York, 1996.
- 7. R.S.Khurmi, "Strength of Materials", 23rd Edition, S.Chand Limited, 2007.
- 8. R.K.Rajput, "Strength of Materials: Mechanics of Solid", 4th Edition, S.ChandLimited, 2007.

13. Assessment Scheme:

i) Periodical tests

	Topics	Marks
CATI	Module I &II&III	60
CATII	Module III & IV&V	60
End sem	Module I-VI	100

ii) Project Based Learning

Topics	Marks
Review 1	40
Review 2	40
Review 3	40

Page 1 of 4

ASMI Chah

CAXIANT WILL

14. Course Outcome: The student should be able to

- Identify and relate different kinds of load factors experienced in aircraft flight.
- Estimate the load bearing capability of different structural members used in the construction of aircraft.
- Extend the concepts of solid mechanics to in-determinate structural problems.
- Obtain theoretical predictions of structural behavior using energy methods.
- Predict the load bearing capacity of pressure vessels.
- Predict the response of the structural elements subjected to combined loadingusing the theoretical and the graphical method.

Home There

Annexure-I

MODULE MODULE MODULE MODULE MODULE MODULE STATICALLY IN DETERMINATE STRU STATICALLY IN DETERMINATE STRU STATICALLY IN DETERMINATE STR Propped Cantilever beams, Fixed-Fixer Clapeyron's 3 momentitheorem	LOADS AND STRUCTURAL COMPONENTS OF V-n Diagram Different structural members of aircraft, Loads taken by thecomponents general definitions. STATICALLY DETERMINATE		BB/PP/Video
= W 07 E 0	tural members of aircraft, y thecomponents general definitions.		
- W 0 E 0	tural members of aircraft, y thecomponents general definitions.	2	BB/PPT
- 17 07 11 0	y thecomponents general definitions.	ć	
- 17 07 11 0	DETERMINATE	7	BB/PPT
	Plane fruss analysis mothers STRUCTURES	7	BB/PPT
	diverse, method of joints, tions,	4	BB/PPT
		4	DD Anna
-	STATICALLY IN DETERMINATE STRIIGHT	4	BB/BBT
III Clapty Oll S 3 P	ever beams, Fixed-Fixed beams	ro.	BB/PPT
Moment distribution	nomenttheorem		
Of Bein House	ution method, Maxwell's reciprocal theorem.	4 6	BB/PPT
MODULE COLUMNS		0	BB
_	Inelastic buckling, Effect of initial curvature, Eccentric loading on columns, South well plot	9	BB/PPT
Use of energy n	Use of energy methods in column Beam-columns		
MODITE LESS METH	ENERGY METHODS -Castigliano's theorems	4	BB/PPT
	Figure 1 and Dummy load methods, application of	m .	BB/PPT
Short and the sh	residential to trames, beams, trusses and rings.	0 4	BB
FAILURE THEORY	RY)	BB/PPT
JLE	Maximum principle Stress theory, Maximum principle Strain theory		
stress theory, distortion	ry, distortion energy theory, octahedral shear	2 1	BB
	V2		BB/PPT
	TOTAL PERIODS CO.		

A

V& May Julyling

rning activities and assessments

Course	Course Learning activities Assessments	Assessments	CAT I*	CAT II*	End sem
outcomes			%	%	%
	Identify and relate different kinds of load factors	An and a	25		15
course outcome 1	experienced in aircraft flight.				15
Course	Estimate the load bearing capability of different structural members used in theconstruction of		20		2
Culconic	aircraft.	Assessment test+	15	15	20
Course outcome 3	Extend the concepts of solid mechanics to indeterminate structural problems.	Project Based Learning			
Course outcome 4	Give a theoretical design of columns subjected to various loads.			25	20
Course	Obtain theoretical predictions of structural behavior using energy methods.	U		2	2
Course outcome 6	Acquire knowledge on failure theories and to predict the values of the stress atwhich the structure fails.				15
Project based Learning			40	40	

*% of questions in the question paper relevant to the respective outcomes

Head of the Department

Course Faculty 11119

Date: 04-01-2019

COURSE PLAN

1. Course Title :Low Speed Aerodynamics 5. Semester : IV
2. Course Code :AEC 2211 6. Academic Year : 2018-19
3. Course Faculty :SKarthikeren

3. Course Faculty :S.Karthikeyan 7. Department : Aero

4. Theory / Practical : Theory 8. No. of Credits : 3

9. Course Learning Objectives:

- To introduce the basic aerodynamic concepts like circulation, vorticity and irrotationality.
- To understand the concepts of super position of elementary flows for linear incompressible flow.
- To introduce the concept of classical thin airfoil theory and Prandtl's lifting line theory for wings.
- Introduce the basics of viscous flow.

10. Course pre-requisites:

Fluid mechanics

11. Schedule of Teaching and Learning

CINI	D .				
Sl.No.	Period	Topic	Mode of	Teaching Aids	Reference /
		the size and the same state that had the first that they saw that had they say the page that	delivery		Source
			[Furnished as Ar	inexure]	
	THE RESERVE				

12. Course Material and References

A list of reference books is given along with lesson plan.

13. Assessment Scheme:

Scheme of assessment	Ass	sessment 1	Ass	sessment 2	T 10	
	CAT 1	Assignment	CAT 2	Assim	End Semester	
Marks in			57.75.4	Assignment	Exam	
percentage	70	30	70	30		
Internal & End				30	100	
semesterMarks		50				
Total marks					50	
			100			

i) Periodical tests.

There will be twocontinuous assessment tests and the test portions are given below:

Test I

Module I, II& 50% of III Module

Test II

Remaining 50% of Module III, Module IV&V

ii) Tutorial

A set of problems will be given one day in advance. Students will be asked to solve in the

iii) Seminar

Topic: Flow over different types of bodies

iv) Carry Home Exercise

Numerical problems in necessary modules will be given as home exercise.

v) Self Study

In aerodynamics point of view. identify the suitable airfoils for various types of

vi) Content Beyond Syllabus

Students may be asked to solve and analysis the flow over simple bodies by

14. Course outcomes

A8 We Ghal 21/1/2019

Students will be able to

- Mathematically express the fundamental equations of fluid flow and elementary flow concepts.
- Apply potential flow theory for inviscid, incompressible flow.
- Perform simple calculations for the estimation of the lift characteristics of airfoils using circulation theory/ thin airfoil theory.
- Estimate the induced drag characteristics and lift characteristics of finite wings.
- Perform simple laminar boundary layer calculations.
- Perform simple calculations in wall bounded turbulent boundary layer/ free shear layers.

Date: 07.01.19

Head of the Department

15. Mapping of course outcomes with learning activities and assessments

Course outcomes	Learning activities	Assessments	CATI*	CAT II *	End sem *
Course outcomes 1, 2 & 3		CAT/Assignment/ End Sem Exam	100	-	45
Course outcomes 3,4 & 5	Refer Annexure -Schedule of Teaching and Learning	CAT/Assignment/ End Sem Exam	-	100	45
Course Outcome 6		End Sem Exam		4	10

^{*%} of marks in the question paper relevant to the respective outcomes

Date: 07.01.19

ASKE Mah.
Head of the Department
21/1/2019

ANNEXURE (vide item 11) Schedule of Teaching and Learning

-	S.No.	Pe	riod	Topic	Mode of Delivery		Aids Dot	Power 10
	1		2	Over view of Mod 1. Continuity, momentum and energy equations	Over view of Mod 1. Continuity, momentum and nergy equations		Aids Reference / Sou	
	2	2		Differential equations for streamline, angular velocity Vortices, circulation. Stream Function, Potential Function, Equi-potential Lines	Lecture	Black Boar PPT	d& Aero	D. Anderson, Jandamentals of odynamics, Tata McGraw-Hill ishing Co. Ltd.
	3	2		Elementary Flows and their combinations. (Total 6 periods)	and their		Nev	w Delhi, 2007.
	4 1		i	Over view of Mod 2 Bernoulli's equation, ncompressible flow in a				
5	5 1		Pitot tube, pressure coefficient, governing equation for irrotational incompressible flow,				John D	. Anderson, Jr., lamentals of
6		3	F cy Pa	low over a circular vlinder, D'Alembert's aradox,	Lecture	Black Board & PPT	Aerod Mc Publisl	ynamics, Tata Graw-Hill ning Co. Ltd
7		2	1	ting flow over a cylinder, uttaJonkowski Theorem			New	Delhi, 2007.
8		1	(Te	eal flow over smooth and ugh cylinder, otal 8 Periods)		9.00		
9		2	Ov Air	rfoil nomenclature, airfoil aracteristics,				
0		1	Ku	tta condition,		= 1	3 3 3 -	
1	2	2	tran	ta-Joukowski esformation and its lications			John D. A	nderson, Jr.,
2	2		Kar	man Trefftz Profiles,	Lecture	Black Board	Aerodyna	nentals of amics, Tata
3	1		Thir	Airfoil theory vation		& PPT	McGr Publishin	aw-Hill g Co. Ltd.
	1		App Airfo perio				New De	Ihi, 2007.

15	2	Over view of Mod 4 Downwash and induced drag, Vortex Filament, Biot-Savart Law, Helmholtz theorems			6
16	2	Bound Vortex and trailing			
17	2	Prandtl's Lifting Line Theory, lift and induced drag coefficients for elliptic lift distribution.	Lecture	Black Boar & PPT	McGraw-Hill
18	2	Effect of aspect ratio,			Publishing Co. Ltd.,
19	2	Oswald Efficiency factor (Total 10 periods)			New Delhi, 2007.
20	1	Over view of Mod 5 Laminar incompressible boundary layer			
21	1	Boundary layer equations, flat plate boundary layer			H Cablest
22	2	Blasius solution, effect of pressure gradient, similarity in boundary layer	Lecture	Black Board & PPT	Hill Book
23	2	Shape factor, laminar separation.			Company, New York, 1979.
24	1	Over view of Mod 6			
25	1	Turbulent boundary lavor	: <u>_</u>		
26	1	on a flat plate Effect of pressure gradient			H. Schlitching,
27	1	Prandtl's mixing length hypothesis	Lecture	Black Board & PPT	Boundary Layer Theory, 7th Edition, McGraw- Hill Book
28	2	Free shear layers (Total 6 Periods)		L - L mily	Company, New York, 1979.

Date: 07,01.19

Course faculty

ABRICA head Head of the Department 21/1/2019

COURSE PLAN

1. Course Title

: Airbreathing Propulsion

2. Course Code

: AEC 2213

3. Course Faculty

: Mr. Sri Nithya Mahottamananda

4. Theory / Practical

: Theory

5. Semester

: IV

6. Academic Year

: 2018-19

7. Department

: Aerospace Engineering

8. No. of Credits

: 3

9. Course Learning Objectives:

To introduce the fundamentals of aircraft propulsion and the working principles of gas turbine engine components.

10. Course pre-requisites:

Knowledge in basics of thermodynamics and Fluid mechanics.

11, Schedule of teaching and learning

Period	Tonio	M 1 C		
1.01100	Topic	Mode of	Teaching Aids	Reference /
		Dalivan		reservance,
		Delivery		Source
	Period	Period Topic	Period Topic Mode of Delivery	Mode of Teaching Aids

[Refer Annexure- I]

Teaching aids involved:

Traditional	ICT	Experimental	Simulated	Participating	Any other
40	20	20			
-10	20	20	2; H 2	10	10

12. Course material and References

- 1. Saravanamuttoo, H.I.H., Rogers, G.F.C., Cohen H., Paul Straznicky, "Gas Turbine Theory", 6th Edition,
- 2. Hill Philip, Peterson Carl, "Mechanics and Thermodynamics of Propulsion", Addison Wesly, 1992.

- 1. Kroes Michael J, Wild Thomas W, "Aircraft Powerplants", 7th Edition, TataMcGraw Hill, 2010. References
- 2. Mattingly J. D., "Elements of Gas Turbine Propulsion", Tata McGraw Hill, 2005.
- 3. El-Sayed Ahmed, "Aircraft Propulsion and gas turbine engines", Taylor and Francis (CRC press), 2008.
- 4. "Rolls Royce Jet Engine", 3rd Edition, 1983.
- 5. Roy Bhaskar, "Aircraft Propulsion", Elsevier (India), 2008.

13. Assessment Scheme:

i) Periodical tests

There will be three periodical assessment tests and the test portions are given below:

	CATA	End Semester
CAT-1	CAT-2	
609/	60%	100%
0070		
40%	40%	
	60%	60%

Module I (FUNDAMENTALS OF AERO ENGINES-FUNDAMENTALS) CATI

Module II (PROPELLER THEORY)

Module III (SUBSONIC INTAKES FOR JET ENGINES)

Module IV (COMBUSTION SYSTEMS) CAT II

Module V (NOZZLES)

Module VI (COMPRESSORS)

ii) Project

Periodic review on the project topic selected by the students will be carried out once in every fortnight. The progress of their project work will be evaluated (40%).

- iii) Seminar: Seminar topic will be assigned to the students those who are interested

 Time given for preparation 1 week
- iv) Carry home exercise

Problem from each module will be given as carry home exercise

v) Self study

Module VI Multi - stage axial compressor & Cascade Analysis

- vi) Content beyond syllabus
 - Module I: Demonstration of jet & piston prop engines

14. Course outcomes

Student will be able to

- Get deeper perspective of different types of jet engines used in aircrafts.
- Appreciate the importance of piston engines and realize the necessity of propeller fundamentals.
- · Learn major engineering features of jet engine's inlets.
- Visualize the insight of jet engine combustion systems and their complexity.
- Design different types of nozzles and analyze the effect of jet flow interaction with adjacent surfaces.
- Be conversant with compressor performance characteristics and solve basic design problems.

15. Mapping of course outcomes with learning activities and assessments

Course		172	56.71 C 306.669555	, v	
outcomes	Learning activities	Assessments	CAT I *	CAT II *	End sem *
Course outcome 1			33.3	0	16.66
Course outcome 2		Assessments are based on the performance in the	33.3	0	16.66
Course outcome 3	Refer Annexure - Schedule of Teaching and	respective continuous assessments and Project	33.3	0	16.66
Course outcome 4	Learning and		0	33.3	16.66
Course outcome 5			0	33.3	16.66
Course outcome 6			0	33.3	16.66
* 0/ 0					

* % of marks in the question paper relevant to the respective outcomes

Date: 07.01.2019

Course faculty

ASKE Thath
Head of the Department

ANNEXURE (vide item 11)

S.NO	Period	Торіс	Mode of delivery	Teachi Aids	
		MODULE I FUNDAMENTALS	OF AERO ENGI	NES	, courte
1	1	Gas turbine Engine development for Aircraft propulsion, Illustration of working of Gas turbine engines	in	Black Board / PPT	T ₁ & T ₂
2	1	the thrust equation and other performance parameters	Black Board / PPT	T ₁ & T ₂	
3	1	Factors affecting thrust, Effect of pressure, velocity and temperature changes of air entering compressor	e	Black Board / PPT	T ₁ & T ₂
4	2	Variants of Aircraft jet engines Turboprop, Turbofan, Turboje and Turbo shaft	Lecture/Lab	Black Board / PPT	T ₁ & T ₂
5	1	Performance characteristics and analysis, Ideal and Real Brayton cycles		Black Board / PPT	T ₁ & T ₂
6	2	Jet engine cycles for aircraft propulsion, Cycle components and efficiency, Real cycle analysis		Black Board / PPT	T ₁ & T ₂
7	1	Methods of thrust Augmentation.		Black Board / PPT	T ₁ & T ₂
	М	ODULE II PISTON ENGINES & 1	PROPELLER TH	EORY	
8	1	IC engines for aircraft application,	œ	Black Board / PPT	T ₁ & T ₂
9	1	performance parameters of IC engines	Lecture/Lab Demonstration/	Black Board / PPT	T ₁ & T ₂
0	1 S	Supercharging of aircraft IC engines	ICT	Black Board / PPT	T ₁ & T ₂
1	1 P	Propeller fundamentals		Black Board / PPT	T ₁ & T ₂

12	2	Propeller aerodynamic theories.		Black Board / PPT	T ₁ & T ₂
		MODULE III SUBSONIC & SUPE	RSONIC INTAI	KES	
13	1	Internal flow and stall in subsonic intakes – Boundary layer separation		Black Board / PPT	T ₁ & T ₂
14	1	Major features of external flow near a subsonic intake	Lecture/ ICT	Black Board / PPT	T ₁ & T ₂
15	2	Relation between minimum area ratio and external deceleration ratio		Black Board / PPT	T ₁ & T ₂
16	1	Supersonic inlet flows		Black Board /	T ₁ & T ₂
17	2	Starting problems in supersonic inlets		Black Board / PPT	T ₁ & T ₂
18	2	Shock swallowing methods - Modes of inlet operation.			
		MODULE IV COMBUSTIO	N SYSTEMS		***
19	1	Classification of combustion chamber, combustion mechanism, Combustion parameters:		Black Board / PPT	T ₁ & T ₂
20	1	Aerodynamic pressure losses		Black Board / PPT	T ₁ & T ₂
21	1	Combustion Efficiency and performance	Lecture/ project	Black Board / PPT	T ₁ & T ₂
22	1	Combustion Intensity, Factors affecting combustion chamber performance and design,		Black Board / PPT	T ₁ & T ₂
23	2	Fuel Injectors, Flame tube cooling, Flame stabilization, Flame holders, Combustion instability		Black Board / PPT	T ₁ & T ₂

24	1	Numerical Problems		Black Board / PPT	T ₁ & T ₂
		MODULE V NOZ	ZLES		
25	1	Isentropic flow through nozzles		Black Board / PPT	T ₁ & T ₂
26	1	Choking – Area-velocity relation,		Black Board / PPT	T ₁ & T ₂
27	1	Nozzle types - Effect of back pressure on convergent and converging-diverging nozzles	Lecture/ project	Black Board / PPT	T ₁ & T ₂
28	1	over-expanded and under- expanded nozzle exit flows		Black Board / PPT	T ₁ & T ₂
29	2	Nozzle efficiency – Losses in nozzles - Fixed and variable geometry nozzles – Ejector and Variable area nozzles		Black *Board / PPT	T ₁ & T ₂
30	1	Thrust vector control, Thrust reversal.		Black Board / PPT	T ₁ & T ₂
		MODULE VI RAMJET& SCRAM	JET PROPUL	SION	
31	2	Working principle of ramjet engine – ramjet performance		Black Board / PPT	T ₁ & T ₂
32	2	sample ramjet design calculations		Black Board / PPT	T ₁ & T ₂
33	1	Introduction to scramjet – preliminary concepts in supersonic combustion	Lecture/ Assignment	Black Board / PPT	T ₁ & T ₂
34	1	Integral ram-rocket		Black Board / PPT	T ₁ & T ₂
35	1	Numerical problems.		Black Board / PPT	T ₁ & T ₂

COURSE PLAN

1. Course Title

:Aircraft Systems and

5. Semester

:IV

Instrumentation

2. Course Code

: AEC2214

6. Academic Year :2018-19

3. Course Faculty

: Mr.M.Magesh

7. Department

:Aerospace

4. Theory / Practical

: Theory

8. No. of Credits : 3

9. Course Learning Objectives:

- To impart knowledge of the hydraulic and pneumatic systems components and its operation.
- To introduce the basic knowledge of flight control system and its types.
- To acquaint the students to basic engine components and their applications
- To introduce some knowledge about the cabin comfort system and its applications.
- To gain the basic knowledge of navigational instruments to the students.

10. Course pre-requisites:

Introduction to Aeronautical Engineering

11. Schedule of teaching and learning

SI.No.	Period	Topic	Mode of delivery	Teaching Aids	Reference / Source
Secretary of this wills at the	Named Activities - Teaching		[To be furnishe	ed as Annexure]	***************************************

12. Course material and References

- 1. McKinley, J.L., and Bent, R.D., "Aircraft Maintenance & Repair", McGraw-Hill, 1993.
- Federal Aviation Administration, "General Hand Books of Airframe and Powerplant Mechanics", 2. U.S. Dept. of Transportation, , the English Book Store, New Delhi1995.
- 3. Mekinley, J.L. and Bent, R.D., "Aircraft Power Plants", McGraw-Hill, 1993.
- Pallet, E.H.J., "Aircraft Instruments & Principles", Pitman & Co., 1993. 4.
- 5. Treager, S., "Gas Turbine Technology", McGraw-Hill, 1997.

13. Assessment Scheme:

- i) Continuous Assessment Test (CAT) 2 (35 Marks)
- ii) Assignment 2 (15 Marks)

14. Course outcomes

Students will be able to

- Demonstrate the ability to design a various system using pneumatic and hydraulic components.
- Keep abreast knowledge on various flight control system and its recent advancements.
- Demonstrate the fundamental understanding of the operation of engine auxiliary systems.
- To understand the various cabin comfort system used in aircraft modern display systems.
- Describe principle behind the operation of various vital parameter displays and its uses in effective conduct of the flight.
- To get basic knowledge of modern aircraft system which helps in understanding the aircraft navigation system better.

15. Mapping of course outcomes with learning activities and assessments

Course outcomes	Assessments	CATI*	CAT II *	End sem *
Course outcome 1 & 2	Continuous Assessment test, Assignment, Seminar, End sem.	70%		40-45%
Course outcome 3 & 4	Continuous Assessment test, Assignment, Seminar, End sem.	30%	70%	40-45%
Course outcome 5 & 6	Continuous Assessment test, Assignment, Seminar, End sem.		30%	10-20%

*% of questions in the question paper relevant to the respective outcomes

Date: 07-01_2019

A Course faculty

Head of the Department

ANNEXURE (vide item 11) Schedule of Teaching and Learning

S.No.	Periods	Topic	Mode of Delivery	Teaching Aids	Reference / Source
2	2	AIRCRAFT SYSTEMS Hydraulic systems – Study of typical workable systems – components – hydraulic systems controllers – modes of operation — brake system – components. pneumatic systems – working principles – typical pneumatic power system		BB/PPT	Mckinley, J.L. and Bent R.D. "Aircraft Maintenance & Repair", McGraw Hill,1993
3	1	Brake system – components			11111, 1993
4	2	landing gear systems – classification		34.9%	
5	1	shock absorbers- retroactive mechanism			
6	1	MODULE II AIRPLANE CONTROL SYSTEMS: Conventional Systems – modern control systems	Lecture/ Assignment	and Be "Air Mainter Repair",	Mckinley, J.L. and Bent R.D. "Aircraft
7	2	Power assisted and fully powered flight controls – power actuated systems			Maintenance & Repair", McGraw Hill,1993
8	1	Engine control systems – push pull rod system – operating principles			
9	1	Digital fly by wire systems.			4
10	1	Active control technology			vd).
11	1	Auto pilot system			

		tachometers – temperature gauges – pressure gauge – operation and principles			
23	2	MODULE VI MODERN AIRCRAFT SYSTEMS: Auto pilot system - Digital fly by wire systems			Pallet, E.H.J,
24	1	Side stick intelligent flight control system active control Technology	Lecture/Lab Demonstration	BB/PPT	"Aircraft Instruments & Principles", Pitman
25	2	Electronic instrument display, EADI, EHSI			& Co 1993 .
26	2	communication and Instrument landing system:			

Date: 07-01-2019

Course faculty

Head of the Department

04/1/2019