LESSON PLAN 1. Course Title Basic Engineering Mechanics 2. Course Code GEC1211 3. a) Course Faculty Dr.P.N.Kadiresh (Prof/Aero) b) Course Coordinator Dr.V. Muralidharan (Assoc Prof/Mech) 4. Theory / Practical Theory 5. Semester Il semester 6. Academic Year 2018-2019 7. Department Aerospace Engineering 8. No. of Credits # Course Learning Objectives: - To impart knowledge about the basic laws of statics and dynamics and their - To acquaint both with scalar and vector approaches for representing forces and moments acting on particles and rigid bodies and their equilibrium - To give on exposure on inertial properties of surfaces and solids - To provide an understanding on the concept of work energy principle, friction, ### 10. Course pre-requisites: Knowledge on Vector Algebra Knowledge on basic Physics and Mathematics 11. Schedule of teaching and learning [furnished as Annexure] # 12. Course material and References - Video-graphed Lectures will be made available in the intranet. - > PPT slides on each topic also can be downloaded. #### References: 1. Beer, F.P and Johnston Jr. E.R, "Vector Mechanics for Engineers, Dynamics & Statics", Third SI Metric Edition, Tata McGraw-Hill International Edition, 2001. 2. Hibbeller, R.C., Engineering Mechanics, Vol. 1 Statics, Vol. 2 Dynamics, Pearson 3. Irving H. Shames, Engineering Mechanics - Statics and Dynamics, IV Edition Ax Me Shah # 13. Assessment Scheme: | Assessment I | Percentage | |-----------------------------------|------------| | Periodical Test 1
Assignment 1 | 70
30 | | Assessment II | 30 | | Periodical Test 2
Assignment 2 | 70 | | Assessment III | 30 | | End semester exam | 100 | ### i) Periodical tests. There will be three periodical assessment tests and the test portions are given Complete Module I, II and (III first half) Test II Complete Module III (second half), IV and V # ii) Carry home exercise Twenty problems in each unit will be given as tutorial. # 14. Expected outcome of the course: On completion of this course students should be able to - Analyze and resolve forces, moments and solve problems using various - Apply the concept of equilibrium to particles and solve problems - Apply the concept of equilibrium to rigid bodies and solve problems - Analyze and determine the properties of surfaces - Analyze and evaluate the fractional forces between the bodies - Apply the laws of motion in solving dynamics problems Atheahal # 15. Mapping of course outcomes with learning activities and assessments | Course outcome: | Learning activities | Assessments | CAT I | CAT II | End sem | | |--|---------------------|-----------------------------|-------|--------|---------|--| | Analyze and | d Lecture | Tutarial | % | % | % | | | resolve forces moments and solve problems using various principles and laws of Mechanics | | Tutorial CAT End Exam | 40 | - | 15 - 20 | | | Apply the concept of equilibrium to particles and solve problems | Lecture | Tutorial
CAT
End Exam | 30 | ÷ | 15 - 20 | | | Apply the concept of equilibrium to rigid bodies and solve problems | Lecture | Tutorial
CAT
End Exam | 30 | - | 15 - 20 | | | Analyze and determine the properties of surfaces | Lecture | Tutorial
CAT
End Exam | • | 40 | 15 - 20 | | | Analyze and evaluate the fractional forces between bodies | Lecture | Tutorial
CAT
End Exam | - | 30 | 15 - 20 | | | Apply the laws of motion in solving dynamics problems | Lecture | Tutorial
CAT
End Exam | 2 | 30 | 15 - 20 | | Date: 03/01/2019 Aske Chon Head of Department Course Faculty 030119 #### ANNEXURE (vide item 11) #### Schedule of Teaching and Learning | Module
No. | SI. No | Topics | No. of
Periods | Mode of
Delivery | Teaching
Aids | References
Sources | |---------------------------------------|--------|--|-------------------|--|---|-----------------------| | anics | 1 | Introduction, units and dimensions, laws of mechanics, Lame's theorem | 1 | Lecture | PPT, chalk & talk | T1, R1 & R2 | | oach to Mech | 2 | Vectors – Vectorial representation of forces and moments Vector Algebra and its Physical relevance in Mechanics | 2 | Lecture &
Cooperative
Problem
solving | PPT, chalk & talk | T1, R1 & R2 | | Module 1 Vector Approach to Mechanics | 3 | Coplanar Forces – Resolution and
Composition of Forces | 3,4 | Lecture &
Cooperative
Problem
solving | PPT, chalk & talk | T1, R1 & R. | | Module 1 | 4 | Equilibrium of a particle | 5, 6,
7 | Lecture &
Cooperative
Problem
solving | PPT, chalk & talk | T1, R1 & R2 | | llibrium of
es | 5 | Forces in space - Equilibrium of a particle in space | 8, 9,
10 | Lecture &
Cooperative
Problem
solving | PPT, chalk & talk " | T1, R1 & R2 | | Module 2 Equilibrium of
Particles | 6 | Equivalent systems of forces –
Principle of transmissibility – Single
equivalent Force | 11, 12,
13 | Lecture &
Cooperative
Problem
solving | And PPT,
chalk & talk
Mo PPT,
chalk & talk | T1, R1 & R2 | | gid Bodies | 8 | Free body diagram — Types of supports and their reactions — requirements of stable Equilibrium | 14, 15 | Lecture &
Cooperative
Problem
solving | PPT, chalk & talk | T1, R1 & R2 | | Module 3 Equilibrium of Rigid Bodies | 9 | Moments and Couples – Moment of
a force about a point and about an
axis –Vectorial representation of
moments and couples – Scalar
components of a moment –
Varignon's theorem | 16, 17,
18 | Lecture &
Cooperative
Problem
solving | PPT, chalk & talk | T1, R1 & R2 | | Module 3 | 10 | Equilibrium of Rigid bodies in two dimensions — | 19, 20, | Lecture &
Cooperative
Problem
solving | PPT, chalk & talk | T1, R1 & R2 | | | 11 | Determination of Areas and Volumes – First moment of area Centroid of sections –Rectangle, circle, triangle from integration | 22, 23 | Lecture &
Cooperative
Problem
solving | PPT, chalk & talk | T1, R1 & R2 | | | | | 12 | | Centroid of sections –T section, Angle section | ction, | 1 | | | ure & | | | Desired to be University
GST Sheet, 1 | | |---------------------------------|--------------|---------------------|------------|---|--|-----------------------|----------------------|---|--|-------------------------------|--------------------|----------------|--|--| | urfaces | | | | section, Angle section, section by using standard form | | Hollow 24,
mula | | 24, 25 | 1, 25 Coope
Prot | | PPT, chalk
talk | | & T1, R1 & | | | | perties of s | | 13 | relevance - Rectangle, triangle from integration | | e, circle | | 6, 27 | Lecture &
Cooperative
Problem
solving | | PPT, chalk & talk | | T1, R1 & | | | Module 4 Properties of surfaces | | 14 | | second and product moment
plane area - T section, I sec
Angle section, Hollow section
using standard formula – | | and the second second | | 28, 29 Lectu
Cooper
Probl | | re &
ative
em | PPT, chalk 8 | | & T1, R1 & F | | | | Ñ | | 15 | Parallel axis theore | | and 30, 3 | | . 31 | Lecture & Cooperative Problem solving | | PPT, chalk & talk | | T1, R1 & R. | | | roito | CCION | | 16 | | roduction to Friction – Type
ction,Laws of Coloumb friction
aple contact friction. | s of | 32, | 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | Lecture
Coopera
Probler
solving | ure & PPT, cha | | T4 D4 0 | | | | Module 5 Friction | | 1 | 7 | Slidi | ing Friction, Belt friction | | 35, 3
37 | | Lecture &
Cooperative
Problem
solving | | PPT, chalk & talk | | 「1, R1 & R2 | | | | | 18 | | Rollii | ng resistance-Ladder Friction | | 38, 39
40 |), C | Lecture 8
ooperative
Problem
solving | e PP | T, chalk t | & T: | 1, R1 & R2 | | | | | 19 Re | | evie | w of laws of motion | | 41, 42 | Lecture &
Cooperativ
Problem
solving | | | | T1 | , R1 & R2 | | | of Motion | | 20 | Ne | ewto | on's law | 4 | 3, 44 | Coe | ecture & operative roblem solving | perative PPT, ch
oblem tal | | | | | | Module 6 Laws of Motion | | 21 Work Energy Equa | | rk E | nergy Equation of particles | | 5, 46, Cod
47 P | | cture &
perative
oblem
olving | PPT, chalk & talk | | T1, R1 & R2 | | | | | | 2 | Imp
Mor | nen | e and
tum | 48, | 48, 49 Coope
Prob | | ture &
perative
oblem
lving | erative PPT, c | | chalk & T1, R1 | | | | | 23 | | Impa | ct o | f elastic bodies. | 50, 5 | 1 | Coop | ure & erative olem | | chalk & T1, | | T1, R1 & R2 | | AsheGhon #### Text Books: Beer, F.P and Johnston Jr. E.R, "Vector Mechanics for Engineers, Dynamics & Statics", Third SI Metric Edition, Tata McGraw-Hill International Edition, 2001. #### Reference Books: - Hibbeller, R.C., Engineering Mechanics, Vol. 1 Statics, Vol. 2 Dynamics, Pearson Education Asia Pvt. Ltd., 2000. - Irving H. Shames, Engineering Mechanics Statics and Dynamics, IV Edition Pearson Education Asia Pvt. Ltd., 2003. P. N. Kadmill 030119 Askerhon