Robotics kinematics and Dynamics

C. Sivakumar Assistant Professor Department of Mechanical Engineering BSA Crescent Institute of Science and Technology

Robot Kinematics and Dynamics_Sivakumar_C

Robot kinematics

- KINEMATICS the analytical study of the geometry of motion of a mechanism:
 - with respect to a fixed reference co-ordinate system,
 - without regard to the forces or moments that cause the motion.
- In order to control and programme a robot we must have knowledge of both its spatial arrangement and a means of reference to the environment.

Open Chain Kinematics

- Mechanics of a manipulator can be represented as a kinematic chain of rigid bodies (links) connected by revolute or prismatic joints.
- One end of the chain is constrained to a base, while an end effector is mounted to the other end of the chain.
- The resulting motion is obtained by composition of the elementary motions of each link with respect to the previous one

Robot kinematics

• Joint labeling: started from 1 and moving towards end effector, base being joint 1

Robot Kinematics and Dynamics_Sivakumar_C

Two Basic Joints

Revolute

Prismatic

Position representation

- Kinematics of RR robot is difficult compared to LL robot
- Analyzing in 2-D

- Position of end of the arm can be represented using:
- Joint space method: using joint angles

$$P_j = (\theta_1, \theta_2)$$

• World space : using cartesian coordinate system.

$$P_w = (x, y)$$

• Transformation from one representation to other is necessary for many application.

Type of transformation:

- Forward transformation or forward kinematics

 going from joint space to world space
- Reverse transformation or inverse kinematics
 going from world space to joint space.

- Direct (also forward) kinematics Given are joint relations (rotations, translations) for the robot arm. Task: What is the orientation and position of the end effector?
- Inverse kinematics Given is desired end effector position and orientation. Task: What are the joint rotations and orientations to achieve this?

Forward Transformation of a 2-Degree of Freedom Arm

We can determine the position of the end of the arm in world space by defining a vector for link 1 and another for link 2.

$$\mathbf{r}_1 = [L_1 \cos \theta_1, L_1 \sin \theta_1]$$
(4-1)

$$\mathbf{r}_2 = [L_2 \cos(\theta_1 + \theta_2), L_2 \sin(\theta_1 + \theta_2)]$$
(4-2)

Vector addition of (4-1) and (4-2) yields the coordinates x and y of the end of the arm (point P_w) in world space

$$x = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)$$
(4-3)
$$y = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)$$
(4-4)

Reverse transformation of 2 DOF arm

 $\cos(A + B) = \cos A \cos B - \sin A \sin B$ $\sin(A + B) = \sin A \cos B + \sin B \cos A$ we can rewrite Eqs. (4-3) and (4-4) as

 $x = L_1 \cos \theta_1 + L_2 \cos \theta_1 \cos \theta_2 - L_2 \sin \theta_1 \sin \theta_2$ $y = L_1 \sin \theta_1 + L_2 \sin \theta_1 \cos \theta_2 + L_2 \cos \theta_1 \sin \theta_2$

Squaring both sides and adding the two equations yields

$$\cos \theta_2 = \frac{x^2 + y^2 - L_1^2 - L_2^2}{\frac{1}{2}}$$
Robot Kinematics and Dynamics_Sivakumar_2

Defining α and β as in Fig. 4-4 we get

$$\tan \alpha = \frac{L_2 \sin \theta_2}{L_2 \cos \theta_2 + L_1}$$
$$\tan \beta = \frac{y}{x}$$

Using the trigonometric identity

$$\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

we get

$$\tan \theta_1 = \frac{[y(L_1 + L_2 \cos \theta_2) - xL_2 \sin \theta_2]}{[x(L_1 + L_2 \cos \theta_2) + yL_2 \sin \theta_2]}$$
(4-7)

Knowing the link lengths L_1 and L_2 we are now able to calculate the required joint angles to place the arm at a position (x, y) in world space.

Robot Kinematics and Dynamics_Sivakumar_C

(4-6)

3 DOF arm in two dimension

3 DOF arm in two dimension

Accordingly, we will incorporate a third degree of freedom into the previous configuration to develop the RR: R manipulator shown in Fig. 4-5. This third degree of freedom will represent a wrist joint. The world space coordinates for the wrist end would be

$$x = L_{1} \cos \theta_{1} + L_{2} \cos(\theta_{1} + \theta_{2}) + L_{3} \cos(\theta_{1} + \theta_{2} + \theta_{3})$$

$$y = L_{1} \sin \theta_{1} + L_{2} \sin(\theta_{1} + \theta_{2}) + L_{3} \sin(\theta_{1} + \theta_{2} + \theta_{3})$$

$$\psi = (\theta_{1} + \theta_{2} + \theta_{3})$$
(4-8)

We can use the results that we have already obtained for the 2-degree of freedom manipulator to do the reverse transformation for the 3-degree of freedom arm. When defining the position of the end of the arm we will use x, y, and ψ . The angle ψ is the orientation angle for the wrist. Given these three values, we can solve for the joint angles (θ_1 , θ_2 , and θ_3) using

$$x_3 = x - L_3 \cos \psi$$
$$y_3 = y - L_3 \sin \psi$$

Robot Kinematics and Dynamics_Sivakumar_C

4 DOF manipulator in three dimensions

Robot Kinematics and Dynamics_Sivakumar_C

The manipulator has 4 degrees of freedom: joint 1 (type T joint) allows rotation about the z axis; joint 2 (type R) allows rotation about an axis that is perpendicular to the z axis; joint 3 is a linear joint which is capable of sliding over a certain range; and joint 4 is a type R joint which allows rotation about an axis that is parallel to the joint 2 axis. Thus, we have a TRL:R manipulator.

Let us define the angle of rotation of joint 1 to be the base rotation θ ; the angle of rotation of joint 2 will be called the elevation angle ϕ ; the length of linear joint 3 will be called the extension L (L represents a combination of links 2 and 3); and the angle that joint 4 makes with the x - y plane will be called the pitch angle ψ . These features are shown in Fig. 4-6.

The position of the end of the wrist, P, defined in the world coordinate system for the robot, is given by

$$x = \cos \theta (L \cos \phi + L_4 \cos \psi) \tag{4-9}$$

$$y = \sin \theta (L \cos \phi + L_4 \cos \psi) \tag{4-10}$$

$$z = L_1 + L\sin\phi + L_4\sin\psi \qquad (4-11)$$

Given the specification of point P(x, y, z) and pitch angle ψ , we can find any of the joint positions relative to the world coordinate system. Using $P_4(x_4, y_4, z_4)$, which is the position of joint 4, as an example,

$$x_4 = x - \cos \theta (L_4 \cos \psi) \tag{4-12}$$

$$y_4 = y - \sin \theta (L_4 \cos \psi) \tag{4-13}$$

$$z_4 = z - L_4 \sin \psi \tag{4-14}$$

The values of L, ϕ , and θ can next be computed:

$$L = [x_4^2 + y_4^2 + (z_4 - L_1)^2]^{-1}$$
(4-15)

$$\sin\phi = \frac{z_4 - L_1}{L} \tag{4-16}$$

$$\cos \theta = \frac{y_4}{L_{\text{Dynamics}Sivakumar_C}}$$
(4-127)

Robot Dynamics

- Accurate control of manipulator depends on precise control of joints
- Control of joints depends on forces and intertias acting on them

a. Static analysis

Balancing the forces to know the torque

 $\mathbf{T}_1 = (\mathbf{r}_1 + \mathbf{r}_2) \times \mathbf{F}$

Robot Kinematics and Dynamics_Sivakumar_C

Arm inertias: (a) Minimum inertia about J_J , (b) Maximum inertia about J_J .

Torque requirement

Kinematic

- Forward (direct) Kinematics
- Given: The values of the joint variables.
- Required: The position and the orientation of the end effector.

- Inverse Kinematics
- Given : The position and the orientation of the end effector.
- Required : The values of the joint variables.

Why DH notation

• Find the homogeneous transformation *H* relating the tool frame to the fixed base frame

Robot Kinematics and Dynamics_Sivakumar_C

Why DH notation

 A very simple way of modeling robot links and joints that can be used for any kind of robot configuration.

 This technique has became the standard way of representing robots and modeling their motions.

- 1. Assign a reference frame to each joint (x-axis and z-axis). The D-H representation does not use the y-axis at all.
- Each homogeneous transformation A_i is represented as a product of four basic transformations

- Matrix A_i representing the four movements is found by: four movements
- 1. Rotation of θ about current Z axis
- 2. Translation of d along current Z axis
- 3. Translation of a along current X axis
- 4. Rotation of α about current X axis

$$A_{i} = Rot_{z,\theta_{i}} Trans_{z,d_{i}} Trans_{x,a_{i}} Rot_{x,\alpha_{i}}$$

$$R_{x,\theta} = Rot(x,\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\theta & -S\theta \\ 0 & S\theta & C\theta \end{bmatrix} \quad R_{z,\theta} = Rot(z,\theta) = \begin{bmatrix} C\theta & -S\theta & 0 \\ S\theta & C\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A_{i} = \begin{bmatrix} C\theta_{i} & -S\theta_{i} & 0 & 0 \\ S\theta_{i} & C\theta_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & C\alpha_{i} & -S\alpha_{i} & 0 \\ 0 & S\alpha_{i} & C\alpha_{i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{i} = \begin{bmatrix} c\theta_{i} & -c\alpha_{i}s\theta_{i} & s\alpha_{i}s\theta_{i} & a_{i}c\theta_{i} \end{bmatrix}$$
$$A_{i} = \begin{bmatrix} c\theta_{i} & -c\alpha_{i}s\theta_{i} & s\alpha_{i}s\theta_{i} & a_{i}s\theta_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{i} & -s\alpha_{i}c\theta_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \\ Bobot Kinematics and \end{bmatrix}$$

Dynamics_Sivakumar_C

• The link and joint parameters :

- Link length a_i: the offset distance between the Z_{i-1} and Z_i axes along the X_i axis.
- Link offset d_i the distance from the origin of frame i-1 to the X_i axis along the Z_{i-1} axis.

•Link twist α_i :the angle from the Z_{i-1} axis to the Z_i axis about the X_i axis. The positive sense for α is determined from z_{i-1} and z_i by the right-hand rule.

•Joint angle θ_i the angle between the X_{i-1} and X_i axes about the Z_{i-1} axis.

- The four parameters:
- a_i : link length, α_i : Link twist , d_i : Link offset and
- θ_i : joint angle.
- The matrix A_i is a function of only a single variable q_i, it turns out that three of the above four quantities are constant for a given link, while the fourth parameter is the joint variable.

With the ith joint, a joint variable is q_i associated where

$$q_i = \left\{ \begin{array}{rll} \theta_i & : \ \text{joint i revolute} \\ d_i & : \ \text{joint i prismatic} \end{array} \right.$$

All joints are represented by the z-axis.

- If the joint is revolute, the z-axis is in the direction of rotation as followed by the right hand rule.
- If the joint is prismatic, the z-axis for the joint is along the direction of the liner movement.

 Combine all transformations, from the first joint (base) to the next until we get to the last joint, to get the robot's *total transformation matrix*.

$$T_n^0 = A_1 \cdot A_2 \cdot \cdot \cdot \cdot A_n$$

4. From T_n^0 , the position and orientation of the tool frame are calculated.

Robot Kinematics and Dynamics_Sivakumar_C

Step 1: Locate and label the joint axes z_0, \ldots, z_{n-1} .

Step 2: Establish the base frame. Set the origin anywhere on the z_0 -axis. The x_0 and y_0 axes are chosen conveniently to form a right-hand frame.

For $i = 1, \ldots, n - 1$, perform Steps 3 to 5.

- Step 3: Locate the origin o_i where the common normal to z_i and z_{i-1} intersects z_i . If z_i intersects z_{i-1} locate o_i at this intersection. If z_i and z_{i-1} are parallel, locate o_i in any convenient position along z_i .
- Step 4: Establish x_i along the common normal between z_{i-1} and z_i through o_i , or in the direction normal to the $z_{i-1} z_i$ plane if z_{i-1} and z_i intersect.

Step 5: Establish y_i to complete a right-hand frame.

Step 6: Establish the end-effector frame $o_n x_n y_n z_n$. Assuming the *n*-th joint is revolute, set $z_n = a$ along the direction z_{n-1} . Establish the origin o_n conveniently along z_n , preferably at the center of the gripper or at the tip of any tool that the manipulator may be carrying. Set $y_n = s$ in the direction of the gripper closure and set $x_n = n$ as $s \times a$. If the tool is not a simple gripper set x_n and y_n conveniently to form a right-hand frame.

Step 7: Create a table of link parameters a_i , d_i , α_i , θ_i .

- a_i = distance along x_i from o_i to the intersection of the x_i and z_{i-1} axes.
- d_i = distance along z_{i-1} from o_{i-1} to the intersection of the x_i and z_{i-1} axes. d_i is variable if joint i is prismatic.
- α_i = the angle between z_{i-1} and z_i measured about x_i

- θ_i = the angle between x_{i-1} and x_i measured about z_{i-1} . θ_i is variable if joint *i* is revolute.
 - **Step 8:** Form the homogeneous transformation matrices A_i by substituting the above parameters into

$$A_{i} = \begin{bmatrix} c\theta_{i} & -c\alpha_{i}s\theta_{i} & s\alpha_{i}s\theta_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{i} & -s\alpha_{i}c\theta_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Step 9: Form $T_n^0 = A_1 \cdots A_n$. This then gives the position and orientation of the tool frame expressed in base coordinates.