Robotics kinematics and Dynamics

C. Sivakumar
Assistant Professor
Department of Mechanical Engineering
BSA Crescent Institute of Science and Technology

Robot kinematics

- KINEMATICS - the analytical study of the geometry of motion of a mechanism:
- with respect to a fixed reference co-ordinate system,
- without regard to the forces or moments that cause the motion.
- In order to control and programme a robot we must have knowledge of both its spatial arrangement and a means of reference to the environment.

Open Chain Kinematics

 Joint-variables Joint-varidles - Mechanics of a manipulator can be represented as a kinematic chain of rigid bodies (links) connected by revolute or prismatic joints.- One end of the chain is constrained to a base, while an end effector is mounted to the other end of the chain.
- The resulting motion is obtained by composition of the elementary motions of each link with respect to the previous one

Robot kinematics

- Joint labeling: started from 1 and moving towards end effector, base being joint 1

(a)

Two Basic Joints

Revolute

Prismatic

Position representation

- Kinematics of RR robot is difficult compared to LL robot
- Analyzing in 2-D

- Position of end of the arm can be represented using:
- Joint space method: using joint angles

$$
P_{i}=\left(\theta_{1}, \theta_{2}\right)
$$

- World space : using cartesian coordinate system.
$P_{w}=(x, y)$
- Transformation from one representation to other is necessary for many application.

Type of transformation:

- Forward transformation or forward kinematics
- going from joint space to world space
- Reverse transformation or inverse kinematics
- going from world space to joint space.
- Direct (also forward) kinematics - Given are joint relations (rotations, translations) for the robot arm. Task: What is the orientation and position of the end effector?
- Inverse kinematics - Given is desired end effector position and orientation. Task: What are the joint rotations and orientations to achieve this?

Forward Transformation of a 2-Degree of Freedom Arm

We can determine the position of the end of the arm in world space by defining a vector for link 1 and another for link 2.

$$
\begin{align*}
& \mathbf{r}_{1}=\left[L_{1} \cos \theta_{1}, L_{1} \sin \theta_{1}\right] \tag{4-1}\\
& \mathbf{r}_{2}=\left[L_{2} \cos \left(\theta_{1}+\theta_{2}\right), L_{2} \sin \left(\theta_{1}+\theta_{2}\right)\right] \tag{4-2}
\end{align*}
$$

Vector addition of (4-1) and (4-2) yields the coordinates x and y of the end of the arm (point P_{w}) in world space

$$
\begin{align*}
& x=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right) \tag{4-3}\\
& y=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right) \tag{4-4}
\end{align*}
$$

Reverse transformation of 2 DOF arm

Robot Kinematics and
Dynamics_Sivakumar_C

$$
\begin{aligned}
\cos (A+B) & =\cos A \cos B-\sin A \sin B \\
\sin (A+B) & =\sin A \cos B+\sin B \cos A
\end{aligned}
$$

we can rewrite Eqs. (4-3) and (4-4) as

$$
\begin{aligned}
& x=L_{1} \cos \theta_{1}+L_{2} \cos \theta_{1} \cos \theta_{2}-L_{2} \sin \theta_{1} \sin \theta_{2} \\
& y=L_{1} \sin \theta_{1}+L_{2} \sin \theta_{1} \cos \theta_{2}+L_{2} \cos \theta_{1} \sin \theta_{2}
\end{aligned}
$$

Squaring both sides and adding the two equations yields

$$
\begin{equation*}
\cos \theta_{2}=\frac{x^{2}+y^{2}-L_{1}^{2}-L_{2}^{2}}{\substack{\text { Robotkinem } \\ \text { Dynamicsivitur }}} \tag{4.5}
\end{equation*}
$$

Figure 4-4

Defining α and β as in Fig. 4-4 we get

$$
\begin{align*}
& \tan \alpha=\frac{L_{2} \sin \theta_{2}}{L_{2} \cos \theta_{2}+L_{1}} \tag{4-6}\\
& \tan \beta=\frac{y}{x}
\end{align*}
$$

Using the trigonometric identity

$$
\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
$$

we get

$$
\begin{equation*}
\tan \theta_{1}=\frac{\left[y\left(L_{1}+L_{2} \cos \theta_{2}\right)-x L_{2} \sin \theta_{2}\right]}{\left[x\left(L_{1}+L_{2} \cos \theta_{2}\right)+y L_{2} \sin \theta_{2}\right]} \tag{4-7}
\end{equation*}
$$

Knowing the link lengths L_{1} and L_{2} we are now able to calculate the required joint angles to place the arm at a position (x, y) in world space.

Robot Kinematics and
Dynamics_Sivakumar_C

3 DOF arm in two dimension

Robot Kinematics and
Dynamics_Sivakumar_C

3 DOF arm in two dimension

Accordingly, we will incorporate a third degree of freedom into the previous configuration to develop the $R R: R$ manipulator shown in Fig. 4-5. This third degree of freedom will represent a wrist joint. The world space coordinates for the wrist end would be

$$
\left.\begin{array}{l}
x=L_{1} \cos \theta_{1}+L_{2} \cos \left(\theta_{1}+\theta_{2}\right)+L_{3} \cos \left(\theta_{1}+\theta_{2}+\theta_{3}\right) \\
y=L_{1} \sin \theta_{1}+L_{2} \sin \left(\theta_{1}+\theta_{2}\right)+L_{3} \sin \left(\theta_{1}+\theta_{2}+\theta_{3}\right) \tag{4-8}\\
\psi=\left(\theta_{1}+\theta_{2}+\theta_{3}\right)
\end{array}\right\}
$$

We can use the results that we have already obtained for the 2 -degree of freedom manipulator to do the reverse transformation for the 3-degree of freedom arm. When defining the position of the end of the arm we will use x, y, and ψ. The angle ψ is the orientation angle for the wrist. Given these three values, we can solve for the joint angles (θ_{1}, θ_{2}, and θ_{3}) using

$$
\begin{aligned}
& x_{3}=x-L_{3} \cos \psi \\
& y_{3}=y-L_{3} \sin \psi
\end{aligned}
$$

4 DOF manipulator in three dimensions

Robot Kinematics and
Dynamics_Sivakumar_C

The manipulator has 4 degrees of freedom: joint 1 (type T joint) allows rotation about the z axis; joint 2 (type R) allows rotation about an axis that is perpendicular to the z axis; joint 3 is a linear joint which is capable of sliding over a certain range; and joint 4 is a type R joint which allows rotation about an axis that is parallel to the joint 2 axis. Thus, we have a TRL:R manipulator.

Let us define the angle of rotation of joint 1 to be the base rotation θ; the angle of rotation of joint 2 will be called the elevation angle ϕ; the length of linear joint 3 will be called the extension L (L represents a combination of links 2 and 3); and the angle that joint 4 makes with the $x-y$ plane will be called the pitch angle ψ. These features are shown in Fig. 4-6.

The position of the end of the wrist, P, defined in the world coordinate system for the robot, is given by

$$
\begin{align*}
& x=\cos \theta\left(L \cos \phi+L_{4} \cos \psi\right) \tag{4-9}\\
& y=\sin \theta\left(L \cos \phi+L_{4} \cos \psi\right) \tag{4-10}\\
& z=L_{1}+L \sin \phi+L_{4} \sin \psi \tag{4-11}
\end{align*}
$$

Given the specification of point $P(x, y, z)$ and pitch angle ψ, we can find any of the joint positions relative to the worid coordinate system. Using P_{4} $\left(x_{4}, y_{4}, z_{4}\right)$, which is the position of joint 4 , as an example,

$$
\begin{align*}
& x_{4}=x-\cos \theta\left(L_{4} \cos \psi\right) \tag{4-12}\\
& y_{4}=y-\sin \theta\left(L_{4} \cos \psi\right) \tag{4-13}\\
& z_{4}=z-L_{4} \sin \psi \tag{4-14}
\end{align*}
$$

The values of L, ϕ, and θ can next be computed:

$$
\begin{align*}
L & =\left[x_{4}^{2}+y_{4}^{2}+\left(z_{4}-L_{1}\right)^{2}\right]^{-1} \tag{4-15}\\
\sin \phi & =\frac{z_{4}-L_{1}}{L} \tag{4-16}\\
\cos \theta & =\frac{y_{4}}{\text { Rabot_ Kinematics and____ }^{\text {Dynamics_Sivakumar_C }}} \tag{4-17}
\end{align*}
$$

Robot Dynamics

- Accurate control of manipulator depends on precise control of joints
- Control of joints depends on forces and intertias acting on them

a. Static analysis

Balancing the forces to know the torque

$$
\begin{array}{ll}
\mathbf{F}_{1}-\mathbf{F}_{2}=0 & \mathbf{T}_{1}=\mathbf{T}_{2}+\mathbf{r}_{1} \times \mathbf{F} \\
\mathbf{F}_{2}-\mathbf{F}=0 & \mathbf{T}_{2}=\mathbf{r}_{2} \times \mathbf{F} \\
\mathbf{F}_{1}=\mathbf{F}_{2}=\mathbf{F} & \\
& \mathbf{T}_{1}=\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right) \times \mathbf{F}
\end{array}
$$

Compensating for gravity

Robot arm dynamics

(a)

(b)

Arm inertias: (a) Minimum inertia about J_{3}. (b) Maximum inertia about J_{3}.

Torque requirement

Kinematic

- Forward (direct) Kinematics
- Given: The values of the joint variables.
- Required: The position and the orientation of the end effector.
- Inverse Kinematics
- Given : The position and the orientation of the end effector.
- Required : The values of the joint variables.

Why DH notation

- Find the homogeneous transformation \boldsymbol{H} relating the tool frame to the fixed base frame

Why DH notation

- A very simple way of modeling robot links and joints that can be used for any kind of robot configuration.
- This technique has became the standard way of representing robots and modeling their motions.

DH Techniques

1. Assign a reference frame to each joint (x-axis and z-axis). The D-H representation does not use the y-axis at all.
2. Each homogeneous transformation A_{i} is represented as a product of four basic transformations

DH Techniques

- Matrix A_{i} representing the four movements is found by: four movements

1. Rotation of θ about current Z axis
2. Translation of d along current Z axis
3. Translation of a along current X axis
4. Rotation of α about current X axis

$$
A_{i}=\operatorname{Rot}_{z, \theta_{i}} \operatorname{Trans}_{z, d_{i}} \operatorname{Trans}_{x, a_{i}} \operatorname{Rot}_{x, \alpha_{i}}
$$

$$
\begin{gathered}
R_{x, \theta}=\operatorname{Rot}(x, \theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \theta & -S \theta \\
0 & S \theta & C \theta
\end{array}\right] \quad R_{z, \theta}=\operatorname{Rot}(z, \theta)=\left[\begin{array}{ccc}
C \theta & -S \theta & 0 \\
S \theta & C \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
A_{i}=\left[\begin{array}{cccc}
C \theta_{i} & -S \theta_{i} & 0 & 0 \\
S \theta_{i} & C \theta_{i} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & C \alpha_{i} & -S \alpha_{i} & 0 \\
0 & S \alpha_{i} & C \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
A_{i}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{\mathrm{i}} & -\mathrm{c} \alpha_{\mathrm{i}} \mathrm{~s} \theta_{\mathrm{i}} & \mathrm{~s} \alpha_{\mathrm{i}} \mathrm{~s} \theta_{\mathrm{i}} & \mathrm{a}_{\mathrm{i}} \mathrm{c} \theta_{\mathrm{i}} \\
\mathrm{~s} \theta_{\mathrm{i}} & \mathrm{c} \theta_{\mathrm{i}} \mathrm{c} \alpha_{\mathrm{i}} & -\mathrm{s} \alpha_{\mathrm{i}} \mathrm{c} \theta_{\mathrm{i}} & \mathrm{a}_{\mathrm{i}} \mathrm{~s} \theta_{\mathrm{i}} \\
0 & \mathrm{~s} \alpha_{\mathrm{i}} & \mathrm{c} \alpha_{\mathrm{i}} & \mathrm{~d}_{\mathrm{i}} \\
0 & 0 & 0 & \begin{array}{c}
\text { Robotkinematics and } \\
\text { Dynamics Sivakumar_c }
\end{array}
\end{array}\right]
\end{gathered}
$$

DH Techniques

- The link and joint parameters :
- Link length a_{i} : the offset distance between the Z_{i-1} and Z_{i} axes along the X_{i} axis.
- Link offset d_{i} the distance from the origin of frame $i-1$ to the X_{i} axis along the Z_{i-1} axis.

DH Techniques

-Link twist α_{i} :the angle from the Z_{i-1} axis to the Z_{i} axis about the X_{i} axis. The positive sense for α is determined from z_{i-1} and z_{i} by the right-hand rule.
-Joint angle θ_{i} the angle between the X_{i-1} and X_{i} axes about the Z_{i-1} axis.

DH Techniques

- The four parameters:
a_{i} : link length, α_{i} : Link twist, d_{i} : Link offset and
θ_{i} : joint angle.
- The matrix A_{i} is a function of only a single variable q_{i}, it turns out that three of the above four quantities are constant for a given link, while the fourth parameter is the joint variable.

DH Techniques

- With the $\mathrm{i}^{\text {th }}$ joint, a joint variable is q_{i} associated where

$$
q_{i}=\left\{\begin{array}{rll}
\theta_{i} & : & \text { joint i revolute } \\
d_{i} & : & \text { joint i prismatic }
\end{array}\right.
$$

All joints are represented by the z-axis.

- If the joint is revolute, the z-axis is in the direction of rotation as followed by the right hand rule.
- If the joint is prismatic, the z-axis for the joint is along the direction of the liner movement.

DH Techniques

3. Combine all transformations, from the first joint (base) to the next until we get to the last joint, to get the robot's total transformation matrix.

$$
T_{n}^{0}=A_{1} \cdot A_{2} \ldots \ldots \cdot A_{n}
$$

4. From T_{n}^{0}, the position and orientation of the tool frame are calculated.

DH Techniques

Robot Kinematics and
Dynamics_Sivakumar_C

DH Techniques

Step I: Locate and label the joint axes z_{0}, \ldots, z_{n-1}.
Step 2: Establish the base frame. Set the origin anywhere on the z_{0}-axis. The x_{0} and y_{0} axes are chosen conveniently to form a right-hand frame.

For $i=1, \ldots, n-1$, perform Steps 3 to 5 .
Step 3: Locate the origin o_{i} where the common normal to z_{i} and z_{i-1} intersects z_{i}. If z_{i} intersects z_{i-1} locate o_{i} at this intersection. If z_{i} and z_{i-1} are parallel, locate o_{i} in any convenient position along z_{i}.

Step 4: Establish x_{i} along the common normal between z_{i-1} and z_{i} through 0_{i}, or in the

DH Techniques

Step 5: Establish y_{i} to complete a right-hand frame.
Step 6: Establish the end-effector frame $o_{n} x_{n} y_{n} z_{n}$. Assuming the n-th joint is revolute, set $z_{n}=a$ along the direction z_{n-1}. Establish the origin o_{n} conveniently along z_{n}, preferably at the center of the gripper or at the tip of any tool that the manipulator may be carrying. Set $y_{n}=s$ in the direction of the gripper closure and set $x_{n}=n$ as $s \times a$. If the tool is not a simple gripper set x_{n} and y_{n} conveniently to form a right-hand frame.

Step 7: Create a table of link parameters $a_{i}, d_{i}, \alpha_{i}, \theta_{i}$.
$a_{i}=$ distance along x_{i} from o_{i} to the intersection of the x_{i} and z_{i-1} axes.
$d_{i}=$ distance along z_{i-1} from o_{i-1} to the intersection of the x_{i} and z_{i-1} axes. d_{i} is variable if joint i is prismatic.
$\alpha_{i}=$ the angle between z_{i-1} and z_{i} measured about x_{i}

DH Techniques

$\theta_{i}=$ the angle between x_{i-1} and x_{i} measured about $z_{i-1} . \theta_{i}$ is variable if joint i is revolute.
Step 8: Form the homogeneous transformation matrices A_{i} by substituting the above parameters into

$$
A_{i}=\left[\begin{array}{cccc}
\mathrm{c} \theta_{\mathrm{i}} & -\mathrm{c} \alpha_{\mathrm{i}} \mathrm{~s} \theta_{\mathrm{i}} & \mathrm{~s} \alpha_{\mathrm{i}} \mathrm{~s} \theta_{\mathrm{i}} & \mathrm{a}_{\mathrm{i}} \mathrm{c} \theta_{\mathrm{i}} \\
\mathrm{~s} \theta_{\mathrm{i}} & \mathrm{c} \theta_{\mathrm{i}} \mathrm{c} \alpha_{\mathrm{i}} & -\mathrm{s} \alpha_{\mathrm{i}} \mathrm{c} \theta_{\mathrm{i}} & \mathrm{a}_{\mathrm{i}} \mathrm{~s} \theta_{\mathrm{i}} \\
0 & \mathrm{~s} \alpha_{\mathrm{i}} & \mathrm{c} \alpha_{\mathrm{i}} & \mathrm{~d}_{\mathrm{i}} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Step 9: Form $T_{n}^{0}=A_{1} \cdots A_{n}$. This then gives the position and orientation of the tool frame expressed in base coordinates.

